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Abstract. A Fokker–Planck description of chaotic dynamical systems, with phase space
dependent transport coefficients is proposed. Ways of analytically obtaining these local transport
coefficients are proposed. A comparison with numerical results for three model systems is made.

1. Introduction

Recently there has been a renewed interest in the study of transport properties of dynamical
systems in phase space. The use of a dynamical systems approach in a number of contexts
ranging from plasma physics [1] to fluid mechanics [2] make the use of a probabilistic
approach to dynamical systems necessary. Since most dynamical systems of interest in
applications will present chaotic behaviour, the strong local exponential instability of nearby
orbits in phase space will make an orbit-by-orbit analysis of the system very hard if not
impossible. Also, in most cases, it is of physical relevance to study the evolution of
a collection of orbits initially distributed in a suitably defined part of phase space, as for
instance would require the problem of escape of charged particles from a plasma confinement
device, or the mixing of a passive tracer in a given fluid flow. In some cases the evolution
of such initial probability distributions of orbits in phase space resembles fairly simple
transport processes which approximately satisfy simple kinetic equations. These kinetic
equations provide a particularly simple way of modelling and predicting the coarse grained
features of the complicated chaotic dynamics. It is then of great importance to applications
to try to characterize and quantify this transport process and find consistent ways of obtaining
the transport coefficients that appear in these kinetic equations.

A number of recent interesting publications [1, 3] have proposed ways of quantifying
the transport processes of dynamical systems in phase space using locally defined quantities
such as the exit time from a domain. These quantities were shown to behave in a more
satisfactory way than traditional measures for the transport process in the sense that they
are well defined even when the transport is not diffusive in the classical sense. Such
quantities have been used in the understanding of transport in cases where the motion is
super-diffusive, as for instance in the case of existence of accelerator modes in the region
of interest or in the case where the region of phase space where the motion takes place is
bounded or shows a mixture of stochastic and regular regimes.

Most of these approaches involve the use of the notion of exit time from a domain. In
[1] a local diffusion coefficient is defined analytically in terms of the exit times. However,
these exit times were only obtained numerically. In this note we give a local description
of the motion in phase space using analytically defined transport coefficients. We then go
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on to show how to obtain local exit times from these and also how to define a suitable
averaging process which allows us to define, in certain cases, global transport coefficients.

The approach hinges on the assumption of strong stochasticity at least for the first
iterations of the method proposed, and in the case that the motion can be described in
terms of action angle coordinates, that the angle dynamics is randomized faster than the
action dynamics. It is then possible to describe the behaviour in phase space in terms
of a Fokker–Planck equation but importantly where the drift and diffusion coefficients are
local functions of the action variable. The locality of the transport coefficients allows us to
model a great variety of possible motions of the dynamical system under consideration. It
is well known that the transport processes in typical dynamical systems can be extremely
complicated, leading possibly to long correlated motions in time in certain parts of phase
space (see e.g. [4, 5]) and simple kinetic equations of the Fokker–Planck-type with constant
transport coefficients are incapable of showing such behaviour. However, the local approach
proposed here can reproduce such effects, as shown in the examples studied in this paper.

2. The local Fokker–Planck equation

The systems we wish to study are area preserving maps of the form

In+1 = In +Kf (θn)
θn+1 = θn + a(In+1)

(1)

wheref (θ) is a periodic function of the angle. For large values ofK the dynamics of
these maps in phase space become strongly chaotic and the angles,θ , can be assumed to
evolve in a stochastic manner while the action,I , behaves in a diffusive manner. Under
this framework we assume thatI evolves under a stochastic differential equation (SDE)

dIt = −V (It ) dt +D(It )1/2 dWt (2)

whereW is a noise term which can be thought of as being a white noise term, or as a
correlated noise term with a finite correlation in time, arising from the strongly chaotic
(pseudo random) variation ofθ . Let us quickly give a hand-waving argument why this
model was chosen. We assume that for the time scales of interest, the time step of iteration
of the map can be thought of as infinitesimal, an assumption which justifies the writing
of the finite jump in action over this time length as a differential. We also assume that
during this time the phasesθn andθn+τ are uncorrelated and therefore the forceKf (θ) or
its iterations in time can be assumed to resemble a stochastic driving of the form dWt . A
rigorous verification of the second assumption has, to our knowledge, never been obtained
for systems other than idealized ones. However, for a great number of systems it is seen
from numerical computation that this is a reasonable assumption.

Then from the general theory of stochastic equations we describe the system in terms of
a Fokker–Planck equation using the Stratonovich interpretation as it automatically implies
conservation of probability. The probability distributionP(I, t) of the processIt will obey
the Fokker–Planck equation [6]

∂P (I, t)

∂t
= − ∂

∂I
(V (I)P (I, t))+ ∂

∂I

(
D(I)

∂

∂I
P (I, t)

)
(3)

where P(I, t) is the probability of finding the system with a valueI at time t . (The
Ito SDE will give a related Fokker–Planck equation and all the results given here can be
trivially rewritten for this case.) The functionsV (I) andD(I) are called the drift and
diffusion coefficients respectively, and are to be interpreted as local transport coefficients.
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It is important to note, that with such action-dependent functions the mean square average
of I averaged over all available phase space does not necessarily change linearly with time.

These local transport coefficients can be defined as

V (I) = 〈I − I0〉
τ

D(I) = 〈(I − I0)
2〉

2τ

(4)

where the angle brackets denote averaging over the possible realizations of the noise term,
and τ is the characteristic time scale over which the dynamics of the map can be thought
of as being approximated by a SDE.

Our approximation procedure for obtaining analytically these local transport coefficients
is based on the phase randomization assumption and can briefly be summarized as follows.
As the lowest approximation we assume that the phases are randomized after a single
iteration of the map. TheI − I0 in the definition of the transport coefficients can simply
be taken to be1I1 = I1 − I0 and we assume that the angles take all possible values and
thus replace the averaging over the noise by an averaging over the angles. This is nothing
but the well known quasilinear approximation [7] which has been used for a long time
with surprisingly good results. For the next step in the approximation we assume that one
iteration of the map is not enough for the phases to become randomized and so we iterate
the map twice and then take the angles every two iterations as the random variable. That
is we approximateI − I0 by 1I2 = In+2 − In = F(In, θn) and then perform the averaging
over the ‘randomized’ anglesθn. The local transport coefficients are then defined as

V2(I ) = −
∫ π
−π 1I2(I, θ)dθ

2τ1

D2(I ) =
∫ π
−π (1I2(I, θ))

2 dθ

4τ1

(5)

where τ1 is the characteristic time for one iteration of the map and hereafter is taken to
be unity, and we have dropped the subscriptn. These quantities can now be interpreted
as action-dependent local transport coefficients. The next approximation is obtained by
using1I3 instead of1I2 . We will denote the local transport coefficients obtained afterk

iterations of the map asVk(I ) andDk(I). It is easy to note that each time we go to the
next approximation we recover the results of the previous approximation plus a correction
term. This correction term is expected to be smaller than the previous approximation since
it would consist of averaging a number of multiples of the functionf (θ), which for large
values of the stochasticity parameterK are expected to oscillate wildly. In all the examples
studied here it is found that as one proceeds to a higher order an extra factor proportional
to K−1/2 appears at each stage and this we take as a justification of the method.

We have to emphasize once more that this approach clearly depends heavily on the
validity of the phase randomization assumption. At the present moment we do not know of
any rigorous results which justify this assumption for general maps of the form studied here.
However, the validity of the quasilinear approximation in many cases leads us to believe
that at least for strong stochasticity the assumption of randomization of the angles—at least
after a number of iterates of the map, as used here—is a valid one. Also another assumption
which has to be checked or can be modified is the assumption that the random phases are
distributed homogeneously in the interval [−π, π ]. There will certainly be regions of phase
space where this assumption breaks down, as for instance regions near KAM curves, where
the angle will not only be correlated in time for long-time intervals but will also not be
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homogeneously distributed. In such cases one should try and approximate in some way the
invariant distribution of angles and use this distribution in the averaging procedure that will
give the local transport coefficients. The task of approximating this invariant distribution
is not an easy one, but in principle could be done locally using approximation techniques
on the Perron–Frobenious operator of the map, or even numerically. Since we just want to
highlight certain ideas here we leave this problem for future work.

We now quote the results obtained by the method discussed above for the local transport
coefficients for a model system, proposed by Antonsen and Ott [8], hereby referred to as
Antonsen’s hybrid map which is of the form

In+1 = In +K sin(θn)

θn+1 = θn +K sin(In+1)
(6)

which has been proposed in plasma physics as a model of electron heating in electromagnetic
waves. The quasilinear approximation to the transport coefficients of this map gives

VQL(I) = 0 (7)

and

DQL(I) = K2/4 (8)

which are not action dependent. The next approximation, obtained by iterating the map
twice gives

V2(I ) = K

2

∞∑
n=1

J2n(K)J1(2nK) sin(2nI) (9)

and

D2(I ) = K2

4
(1+ J0(K)+Dc(I))

Dc(I ) = 2
∞∑
n=1

[J2n(K)J0(2nK)− J2n(K)J2(2nK)− J2n(2K)J2(2nK)] cos(2nI)
(10)

where Jn is the Bessel function. Note that these transport coefficients are now action
dependent but the dependence only occurs in a periodic manner. Depending on the initial
position in phase space, that is the value ofI , the local spreading of the trajectories will be
different because of correlations of the orbits. Note that the action-independent part of the
transport coefficients or equivalently the average over the action gives

D = K2

4
(1+ J0(K)) (11)

which is exactly the one obtained by a Fourier path method by Antonsen and Ott [8] who
calculated a diffusion coefficient using the definitionD = limN→∞ (1I)2

2N whereN is the
number of iterates of the map.

As a second example we can give the standard map for whichf (θ) = sin(θ) and
a(I ) = I . For two iterations of the map we obtain

V2(I ) = −K
2
J1(K) sin(I )

D2(I ) = K2

4
+ K

2

4
(J0(K)− J2(K)) cos(I )− K

2

2
J2(2K) cos(2I )

(12)

so that the action averaged values are just these given by the quasilinear theory. If we iterate
the map three times and average over angles we obtainD3(I ) = K2

2 (
1
2−J2(K)+G(I)) for
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this map, whereG(I) is an oscillating function ofI . The non-oscillating part is identical
to that obtained by the Fourier path method by Rechester and White (see e.g. [7]). This is
of course to be expected as the usual method of calculatingD involves an average over all
phase space.

In all the previous examples the transport coefficients could be calculated exactly in
terms of known functions. For more general maps this is not always the case. To this end
we give an approximate largeK result for a general map of the form given in the beginning
of this section. Assuming thatf (θ) can be expanded in a Fourier series in the form

f (θ) =
′∑
m

Am exp(imθ) (13)

where the dash denotes thatm never takes the value zero, we find that the twice iterated
map gives

D2(I ) = DQL + α
′∑

m,m′
AmAm′

∫ π

−π
exp(i(m+m′)θ0) exp(i(m+m′)a(I1)) dθ0 (14)

where the dash denotes that the sum is taken in such a way thatm + m′ 6= 0 and
DQL = K2

4

∑
m AmA−m andα is some numerical factor proportional toK2. For largeK

the integrand exp(i(m+m′)θ0) exp(i(m+m′)a(I1)) is a fast oscillating function ofθ0 and
so we can use the method of stationary phase to approximate it. The dominant contribution
will come from the pointθ?0 for which

d

dθ0
(θ0+ a(I1)) = 0|θ?0 (15)

that is

1+Ka′(I1)f
′(θ?0) = 0. (16)

For largeK we can approximate this with the values ofθ for which the second term vanishes
thus giving two classes of points which give major contributions

θ
?,1
0 : f ′(θ?,10 ) = 0

θ
?,2
0 : a′(I0+Kf (θ?,20 )) = 0.

(17)

Then a standard application of the stationary phase method (see for instance [9]) gives the
dominant contribution to the diffusion coefficient

D2(I ) = DQL + α
′∑

m,m′
AmAm′((m+m′) exp(iπ))−1/2

×(exp(i(m+m′)(θ0+ a(I1)))(Ka
′(I1)f

′′(θ0))
−1/2|1

+ exp(i(m+m′)(θ0+ a(I1)))K
−1(a′′(I1)(f

′2(θ0)))
−1/2|2) (18)

where|1 and|2 mean that these functions are calculated atθ
?,1
0 andθ?,20 respectively. It can

be seen that this diffusion coefficient will be a function ofI which will not, in general, be
oscillating. For instance for the Fermi map wherea(I ) = I−1 the dominant contribution
would contain functions of the formI sin(1/I) which are clearly not periodic. For the maps
studied above the form ofa(I ) is such thatD(I) is periodic inI . For the particular case
of the Fermi map [12] which is a map of the form

In+1− In + sin(θn)

θn+1 = θn + 2πK

In+1

(19)
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we obtain the following asymptotic result for the diffusion coefficient

D2(I ) = 1

4
− 1

8
cos

(
2γ

I

)
J2

(
2γ

I 2

)
+ 1

8
cos

(γ
I

)
J0

( γ
I 2

)
− 1

8
cos

(γ
I

)
J2

( γ
I 2

)
(20)

whereγ = 2πK. One can obtain similar largeK results to the next approximations. We
do not report these results here but note that by using the stationary-phase approximation
for the integral which arises from the higher iterations of the map we always get the same
stationary points as before plus some new classes of stationary points. So the next-order
approximation will give the same results as the previous one plus correction terms.

Given the values of these local coefficientsV (I) andD(I) it is relevant to understand
how these quantities control the global behaviour of the system over large regions of phase
space. However, before doing that it is worth noting that the method proposed here has
the capability of taking into account long-time correlations of the chaotic motion. This is
because we only assume randomization of the angles, after a finite number of iterations
of the map. So, in a sense finite time correlations are considered in our construction
of the transport coefficients. Whether the number of correlations taken into account is
enough or not is a question that can be answered by looking at the convergence of the
transport coefficientsDn(I) and Vn(I ) (n denotes the number of iterations of the map
taken before phase randomization was assumed) to some well-defined functionD∞(I ) and
V∞(I ) respectively asn → ∞. The form of these local transport coefficients can also
give important information on the long-time behaviour of the chaotic motion. In recent
publications a number of authors have associated long-time correlated chaotic motion in
dynamical systems using the concept of Levy walks. Such processes show an anomalous
behaviour for some moments. In order to give a connection between these stochastic
processes and the usual Fokker–Planck approach some authors (see e.g. [4] and references
within) have proposed the construction of a fractional Fokker–Planck equation in action
space and time which can reconstruct the probability distribution of a Levy-like process.
We maintain that some of these properties (such as for instance the anomalous behaviour
of the moments) can be reproduced by the use of a usual Fokker–Planck equation as long
as the diffusion coefficient is allowed to be a function of action. Take as a simple example
the diffusion equation, with action-dependent diffusion coefficient of the form

∂P

∂t
= ∂

∂I
Iβ
∂P

∂I

that can have the similarity solution

P = t− 1
2−β exp

(
− 1

(2− β)2
x2−β

t

)
.

An easy calculation then shows that the moments of this process will behave as

〈xσ 〉 ∼ t σ
(2−β) 0< β < 2

which reproduces a great wealth of anomalous asymptotic laws depending on the value of
β. In real applications the diffusion coefficient obtained by our method can be a ‘patching
up’ of local asymptotic behaviours with a range of values ofβ which will lead to a series
of asymptotic-time behaviours and depending on the time regime we are interested in we
will pick up a different anomalous law for the moments. Whereas in [4] the values of
the fractional derivatives needed are obtained using the renormalization dynamics for the
dynamical system near an island structure, here in complete analogy we obtainD(I) using
the dynamics (we iterate the map and then average) so the ‘local’ exponents,β, which
govern the moment behaviour are characterized again from the dynamics. The two methods
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can be thought of as being complementary as they both use knowledge of the dynamics
in constructing the extension of the usual Fokker–Planck description and as they can both
reproduce anomalous effects. We chose this approach as it is closer to the usual Fokker-
Planck description and does not require the introduction of fractional derivatives which
can be difficult to handle using conventional techniques. We would also like to draw the
reader’s attention to the fact that as we move to higher and higher iterations of the method
and consequently more and more correlations are taken into account, the assumption of
strong chaos needed for the first few iterations of the method to work may no longer be
necessary as we assume randomization of the phases after the passage of longer and longer
times and this can happen even under the assumption of weak chaos. An example of that is
the calculation of the diffusion coefficient for the Fermi map where the diffusion coefficient
(after enough iterations) seems to predict the existence of a KAM surface by the occurrence
of a large dip in the region where the invariant curve is situated. Our method thus seems
to be able to cope with long-time correlations if iterated sufficiently long and this is an
extra indication that a local transport coefficient can describe long correlated motion, as
for instance motion near an invariant curve. We conjecture that in principle one could
read off the global asymptotic behaviour of the motion from local features of the transport
coefficients obtained using our method to within a reasonable approximation, and we hope
to provide evidence for that in a future publication. Finally we wish to note that we feel
that the proposed method of constructing a systematic improvement of the ‘quasilinear’
transport coefficients is a useful tool since these corrections can change, in a qualitative
manner, the transport process predicted by the ‘quasilinear’ approach and not simply in a
quantitative manner. Again in this case a prime example would be the Fermi map, for
which the quasilinear approach gives diffusion with a constant diffusion coefficient whereas
the next corrections predict existence of a barrier to the transport in phase space.

3. Average transport coefficients

In general, because of the complicated structure of phase space the local transport coefficients
are complicated functions ofI . This complicated variation of the transport coefficients with
action, will show if the system is studied in an orbit-like fashion, which is equivalent in
the Fokker–Planck approach to studying initial probability distributions which have narrow
widths in action space resembling delta functions. This, however, is not what is done in
practice. From the physical point of view we need information on the evolution in phase
space of a more extended initial probability distributions. For such an initial condition, we
expect the intricate structure of the transport coefficients as functions of action to be smeared
out as a consequence of using averages over larger regions of phase space. However, these
localized effects will show on the average behaviour of extended initial conditions, leading
to large scale variations in the transport coefficients. It is then important, in studying the
long-time behaviour of dynamical systems, to introduce suitable averaging processes to
remove the fast scale variations in phase space.

In this section we study the problem of defining average transport coefficients from
the local action-dependent transport coefficients that appear in equation (3). These average
transport coefficients can be compared with appropriate coefficients which can be determined
from numerical computation. We give two alternative ways of the averaging process
depending on how the numerical simulations are performed.
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3.1. Steady state in a slab

Imagine a slab in action space whose surfaces are defined by two distinct values of the
action and then set-up a constant source of particles of strengthG in the middle of it. We
impose absorbing boundary conditions on the ends of the slab and we look at the steady-state
distribution of the particles in the slab after a number of iterations. Thus, the dynamical
behaviour is determined by the following equation

− ∂

∂I
(V (I)P (I, t))+ ∂

∂I
(D(I)

∂

∂I
P (I, t)) = −Gδ(I) (21)

with

P(−L/2) = P(L/2) = 0 (22)

whereL is the width of the slab. We then try to define an average diffusion and drift
coefficient which will model in a satisfactory manner the steady-state distribution for this
geometry. This approach has been used in the past by Cohen and Rowlands [10] for a
diffusion equation and here we generalize it in the case where we include a drift coefficient.

The solution of the above equation can be written as

P = P+ = G32

31+32

1

ψ(I)

∫ L/2

I

ψ(y)

D(y)
dy 06 I 6 L

2

P = P− = G31

31+32

1

ψ(I)

∫ I

−L/2

ψ(y)

D(y)
dy − L

2
6 I 6 0

(23)

where

ψ(I) = exp

(∫ I

−L/2

V (x)

D(x)
dx

)
31 =

∫ L/2

0

ψ(x)

D(y)
dy 32 =

∫ 0

−L/2

ψ(x)

D(y)
dy.

(24)

The total number of particles in the slab will beN+ +N− where

N+ =
∫ L/2

0
P+(x) dx N− =

∫ 0

−L/2
P−(x) dx. (25)

We seek average drift and diffusion coefficientsVa andDa which will give us the same
steady-state average density. In general the result is complicated, however, here we treat
the special case which is needed in the examples discussed in the paper, where we can
takeV (I) to be an odd function ofI andD(I) an even function ofI . Then very simple
arguments show that31 = 32 and

N− = N+ = G

2

∫ L/2

0

1

ψ(y)

∫ L/2

y

ψ(y ′)
D(y ′)

dy dy ′. (26)

We want to define average valuesVa andDa in such a way that these symmetry properties
are conserved. By solving the constant coefficients problem we see that the only way that
31 = 32 is if

Va = 0. (27)

Then the particle number simplifies toN+ = N− = GL2

16Da
and combining it with

equations (23) and (25) we obtain

Da = L2

8

[ ∫ L/2

0

1

ψ(y)

∫ L/2

y

ψ(y ′)
D(y ′)

dy dy ′
]−1

(28)
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which in this case whereV (I) ≡ 0 easily reduces to the result previously given by Cohen
and Rowlands [10] asψ(y) = 1 for everyy.

Let us now calculate the average diffusion and drift coefficient for the Antonsen map
which was defined earlier. From the symmetry properties ofV (I) andD(I) we see that
Va = 0. We now give a largeK expansion for the effective diffusion coefficient. Since for
largeK, Jn(K) ∼ K−1/2 we see that

V ' A1 sin(2I )+ A2 sin(4I )+ · · ·

D ' K2

4
(1+ εB1− ε2B2 cos(2I ))

(29)

whereε2 = 1/K and theA’s andB ’s are oscillatory functions ofK whose values are of
order 1. We can now write

ψ(I) = exp

(
− ε4

∫ I

−L/2
4
A1 sin(2y)+ A2 sin(4y)+ · · ·
1+ εB1− ε2B2 cos(2y)+ · · · dy

)
= 1− ε4M(I) (30)

whereM(I) is given by the expansion of the exponential. Since the corrections arising
from this term are always going to be of orderε4 and here we are interested in corrections
of lower order inε we can neglect theM(I) contribution. We then obtain the following
expansion inε for the average diffusion coefficient

Da

DQL

= L2

8

(∫ L/2

0

∫ L/2

y

(1− εB1+ ε2B2 cos(2y ′)+ · · ·) dy dy ′
)−1

= L2

8

[(
1

8
− εB1

8

)
L2+ ε

2L sin(L)

4
− ε

2B2

4
+ ε

2B2 cos(L)

4

]−1

'
(

1

1− εB1
+ ε2 sin(L)

4L
+ · · ·

)
. (31)

We see that in the limit of a large slab (L→∞)

Da

DQL

' 1

1− εB1
' 1+ J0(K) (32)

which is the usual result obtained from the Fourier path method [8]. If the method is applied
to the standard map in the limit of a large slab we obtain

Da

DQL

' 1− J2(K)

2
+O

(
1

L

)
(33)

for the first term in complete accordance to the results of the Fourier path method (see e.g.
[7]). So the average diffusion for a large slab only picks up the constant (non-oscillating in
action) part of the local diffusion coefficient. A large slab is then equivalent to averaging
over the whole of the phase space. We can also carry out the averaging over finite size
slabs. Then the effective diffusion coefficient will depend on the size of the slab, as seen
from equation (31), in an oscillatory manner and these oscillations are a direct consequence
of the action dependence of the transport coefficients. This effective coefficient is important
for modelling the transport process over finite parts of the phase space.

In the next section we give an alternative definition of an average diffusion coefficient
based on a different type of numerical experiment, namely the escape of orbits from a
domain.
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3.2. Average transport coefficients from the asymptotic decay of an initial distribution in a
slab

We now consider a numerical computation carried out in the following manner. We start
some initial distribution in a slab, impose absorbing boundary conditions, follow the decay,
and measure the decay rate.

The asymptotic decay rate of the probability distribution to zero is identified with the
lowest non-zero eigenvalue of the eigenvalue problem

− d

dI
(V (I )P (I))+ ∂

∂I
D(I)

∂

∂I
P (I) = −λP (I)

P (−L/2) = P(L/2) = 0.
(34)

We will define later an averaged diffusion coefficient in terms of this eigenvalue simply by
Da = λL2

π2 . There are a number of very powerful techniques for obtaining approximate values
for the lowest eigenvalue, as for instance variational techniques (see e.g. [9]). However,
here we shall use a perturbative method which is based onK being large, is easy to use
and gives a simple final result.

For simplicity we limit ourselves to the case where the local drift coefficientV (I)

is smaller than the diffusion coefficientD(I) as happens for the maps studied here. In
accordance with the form of the transport coefficients of the Antonsen or the standard map
we assume the general form

V (I) = 1

ε
f (I )

D(I) = 1

4ε4
(1+ εb1+ εa1g(I)+ · · ·)

(35)

wheref (I) and g(I) are oscillating functions ofI , ε = K−1/2 is a small parameter and
b1, a1 are oscillatory functions ofε−1 with maximum value of O(1).

Defining λ̄ = 4ε4λ we have the following eigenvalue problem

4ε3 d

dI
(f (I )P )+ d

dI
(1+ εb1+ εa1g(I))

dP

dI
= −λ̄P

P (−L/2) = P(L/2) = 0.
(36)

We now use the expansion

P = P0+ εP1+ · · ·
λ̄ = λ̄0+ ελ̄1+ · · ·

(37)

and get to zeroth order

d2P0

dI 2
= −λ̄0P0 with P0(−L/2) = P0(L/2) = 0 (38)

and to first order

d2P1

dI 2
+ λ̄0P1 = −b1

d2P0

dI 2
P0− a1

∂

∂I
g(I )

dP0

dI
− λ̄1P0

with P1(−L/2) = P1(L/2) = 0.
(39)

The solution of the eigenvalue problem (38) gives us for the largest eigenvalue and its
corresponding eigenfunction

P0 = cos

(
πI

L

)
λ̄0 = π2

L2
. (40)
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Since the operator acting onP1 on the left-hand side of (39) is self-adjoint, multiplying
this equation byP0 and integrating over the slab we obtain the consistency condition that
the integral of the right-hand side of equation (39), multiplied byP0, over the whole slab
should vanish. This gives us an equation forλ̄1 in the form

λ̄1 =
(
b1

∫ L/2

−L/2

(
dP0

dI

)2

dI + a1

∫ L/2

−L/2
g(I)

(
dP0

dI

)2

dI

)
1∫ L/2

−L/2P
2
0 dI

. (41)

Note that with the ordering given in (35) the above expression forλ̄1 is independent of the
form of V (I). Since in the constant diffusion coefficient case this eigenvalue isλ = Dπ2

L2 ,
we define an average diffusion coefficient by the relation

Da = L2

π2
(λ0+ ελ1) (42)

which will evidently be dependent onL, and this dependence can be interpreted as some
‘average’ action dependence. In the case whereg(I) = cos(aI ), as for instance in the
Antonsen map, or the standard map, the effective diffusion coefficient to orderε is readily
calculated to give

Da

DQL

= 1+ εb1+ ε 4a1 sin(aL/2)

L

a2L2− 2π2

a(a2L2− 4π2)
+O(ε2) (43)

which in the limit of large slabsaL� 1 gives the constant (in action) diffusion coefficient

Da ' DQL(1+ εb1+O(ε2)) (44)

which for the Antonsen map becomes

Da ' DQL(1+ J0(K)) (45)

and for the standard map is

Da ' DQL(1− 2J2(K)). (46)

For finite slabsDa is an oscillatory function ofL and this reflects the fact that the local
transport coefficients are action dependent. The local diffusion coefficient can be obtained
from the average diffusion coefficient in this case by solving the integral equation∫ L/2

−L/2
g(I)

(
dP0

dI

)2

dI
1∫ L/2

−L/2P
2
0 dI
= Da −D∞

DQL

(47)

whereD∞ = limL→∞Da. Note that this way of defining the effective diffusion coefficient
is consistent with the numerical procedure for the calculation of diffusion coefficients for
chaotic systems proposed by Yannacopoulos and Rowlands [11]. We also note that the
two different methods given in this and the previous section give equivalent results for the
average diffusion coefficients.

In figure 1 we show the effective diffusion coefficient calculated numerically for the
standard map forK = 5 by comparing the decay of an initial distribution in the slab as
a function of the slab widthL with that predicted by a diffusion equation with constant
diffusion coefficient (see [11] for more details). The results clearly show an oscillatory
dependence onL which can be very well approximated by a sinusoidal function. The
amplitude of the oscillations decreases asL is increased in accordance with the results
given above. The asymptotic value ofDa for large slabs tends to a value close to 5.3 which
is very close to the analytically obtained value ofDQL(1− 2J2(K)) while the amplitude
of the oscillations ofDa as a function ofL around this asymptotic value is fairly well
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Figure 1. The average diffusion coefficient for the standard map as a function of the slab width
for K = 5 obtained numerically using the method proposed in [11] (that is matching the escape
rate for the standard map out of a rectangle of lengthL with that of a true diffusion process
and calculating the diffusion coefficients which would give the same decay rate. Note that the
important difference between this approach and the escape rate approach of [16–19] is that we
do not only match the asymptotic exponential term in the series expansion for the probability
distribution but a large number of terms, of the order 100 in this calculation.

predicted by an action-dependent term of the formDQL(J0(K)−J2(K)) cos(I ) as given by
the analytical results for the standard map (see section 2). These numerical results show that
a local diffusion coefficient of the form proposed here can model, in a satisfactory manner,
certain aspects of the transport in phase space†.

As a final way of testing our results we consider the Fermi map defined in section 2.
Seeing how the proposed method works for this map is very important because this is a
map with a bounded phase space since for large enough values of the action there exists
a KAM curve which acts as a barrier to transport through phase space. The diffusion
coefficients defined in section 2 cannot be calculated analytically in closed form for this
map. Certain asymptotic results can be obtained such as those given in section 2. However,
it is very easy to calculate the integrals defining the transport coefficients numerically as a
function of I . These results are shown in figure 2. The different figures give the higher-
order approximations to the diffusion coefficient as a function of the action variable,I ,
calculated with the proposed approximation scheme. From these results it is evident that
our approximation scheme converges very fast to a local diffusion coefficientD(I). We also
see that the convergence is slower in the region of largeI , as expected, since in the large
I region the motion is ordered and the phase randomization hypothesis which is crucial
to the convergence of our method is no longer valid. The smallI results are unaltered
when the number of iterations of the map before averaging are more than 3. However,
even in the largeI regime about eight iterations of the map are enough for the convergence
of the method. Figure 3 shows the numerical results for the diffusion coefficient for the

† Note that in applying the averaging procedure given in this section to compare the numerically obtained transport
coefficients with the analytical ones obtained in section 2 we use a slab whose ends were atI = 0 andI = L.



Local transport coefficients for chaotic systems 1515

0 50 100 150 200 250 300
0

0.5

1

I
D

2

0 50 100 150 200 250 300
0

0.5

1

1.5

I

D
3

0 50 100 150 200 250 300
0

0.5

1

1.5

I

D
4

0 50 100 150 200 250 300
0

0.5

1

1.5

I

D
8

0 50 100 150 200 250 300
0

0.5

1

1.5

I

D
9

0 50 100 150 200 250 300
0

0.5

1

1.5

I

D
20

Figure 2. The diffusion coefficients obtained using the procedure proposed in section 2 for the
Fermi map for a number of iterations of the map as a function of action. The number next to
D shows the number of iterations used.

Fermi map obtained by Murrayet al [12] by direct numerical simulations of the system
and then fitting to a diffusion equation. Note the remarkable agreement in the form of the
diffusion coefficient we showed in figure 2 for a sufficient number of iterations of the map
and this numerical result. Our procedure shows the existence of a KAM torus forI ' 250
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Figure 3. The diffusion coefficients obtained by numerical simulation by Murrayet al [12]
for the Fermi map. An ensemble of 64 000 particles were iterated for 20 and 40 iterations
respectively and averages were taken over these orbits. Note that in this figureu stands forI .
Taken from [12].

because of the great decrease of the diffusion coefficient in this region. It also reproduces
the oscillations of the diffusion coefficient in action space and predicts well the position of
the maximum as well as the value of the diffusion coefficient there. In figure 4 we show
results for the same map obtained in [11] using the decay of the probability distribution in
a slab and again we note a very good resemblance. (Note that figure 4 gives a diffusion
coefficient which is half the one in figure 3, this is due to the definition of the diffusion
coefficient used by Murrayet al [12].) Figure 4 does not show the oscillations shown in
figure 3, this is because of the numerical method used which gives an average diffusion over
regions of action space thus removing the fast oscillations. For more details concerning this
see the discussion in [11].

From figure 2 we note that the deviation of the transport coefficients from the quasilinear
value in some regions of action space is of almost the same order of magnitude as the
quasilinear value itself. For these values of the action the diffusion coefficient cannot be
considered as a perturbation about a constant transport coefficient the method for defining
the average diffusion coefficient given in this section does not strictly apply. Such an
approach gives interesting results far away from the KAM curve but is seen to break down
as expected near the KAM curve. However, from the same figure we note that the local
diffusion coefficients obtained by the method given in section 2 display oscillations in
two distinct action scales. There is a slow oscillation very similar to the one obtained
numerically by Murrayet al [12] and displayed in figure 3, which constitutes the envelope
of the action varying diffusion coefficient and a fast oscillation on top of this slow variation.
It is evident that the system is unable to respond to this fast varying action variation for
initial orbit distribution which are not of a singular (delta function in action) type. From
standard homogenization arguments using multiple scales perturbation theory (in a way very
similar to the one used in [10], but leaving the ‘slow’ action dependence in the reduced
equations) we can find that the slow evolution of the probability distribution will be given
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Figure 4. The diffusion coefficient for the Fermi map obtained by Yannacopoulos and Rowlands
in [11]. Note that in this figurer0 stands forL. Taken from [11].

by a diffusion equation with an ‘effective’ (homogenized) diffusion coefficient of the form

D(I0) =
(∫

Q

1

D(I1, I0)
dI1

)−1

(48)

whereI0 andI1 denote the slow and fast action scales respectively andQ is the periodicity
cell in the fast variable. For a proof of this result see the appendix. The leading-order
approximation to this homogenized diffusion coefficient would simply be the average of
the full diffusion coefficient over the fast scale. From the asymptotic expansion ofD2 in
section 2 for the standard map we observe that the diffusion coefficient contains terms of the
form cos( γ

I
)Jn(

γ

I 2 ) for various integersn. The fast oscillations in the diffusion coefficient
are due to the trigonometric terms while the slow oscillation is due to the Bessel function
terms. The fast variable can then be associated toI1 = γ

I
and the slow variable toI0 = γ

I 2 .
The average of the diffusion coefficient over the fast variable in the original action variable
can then be rewritten as

Da(I) = γ

2π

∫ I

Ie

D(I1, I0)

I
′2 dI ′ (49)

whereI1 andI0 are functions ofI as defined above and

Ie = γ I

γ + 2πI
. (50)

The new limits of integration arise from the observation that the diffusion coefficient is
a periodic function in the fast variableI1 so that the averaging over a periodicity cellQ
in this variable is an integration betweenI1 = I10 and I1 = I10+ 2π . This homogenized
diffusion coefficient as a function of the action was calculated numerically using the diffusion
coefficients obtained from the procedure of section 2. In figure 5 the results obtained by
this method by iterating the map four times and nine times are shown. The homogenized
diffusion coefficients show remarkable agreement with the numerically observed ones by
Murray et al [12] reproduced in figure 3 and support the argument that the system will not
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Figure 5. The ‘homogenized’ (average) diffusion coefficient (as defined by equation (48)) after
averaging short action scale effects obtained theoretically using the four times and nine times
iterated map.

respond to the fast oscillations in action space for reasonably extended initial probability
distributions but will follow the envelope of the diffusion coefficient. The fast oscillations
will be relevant in the case where the initial probability distribution is a delta function or a
very localized function in action space.

In closing this section let us briefly draw analogy of our method with some recent results
obtained using the escape rate formulation [13–16]. First, defining the averaged diffusion
coefficient through the escape rate is equivalent in defining the average diffusion coefficient
by the first eigenvalue of the associated Dirichlet problem, since an asymptotic expansion of
the solution will show that the particle number in the domain will behave asymptotically in
time asN(t) ∼ exp(−λ1t). What is of more interest is the recent association of the transport
coefficients with dynamical quantities such as the Lyapunov exponents and the Hausdorff
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dimension of the subset of phase space which consists of all the (unstable) periodic orbits
of the dynamical system which was proposed by Gaspard and Nicolis [13] (see also [14] for
a more detailed discussion). More precisely they find that the average diffusion coefficient
defined by the escape rate will be proportional to the average Lyapunov exponent on this
set multiplied by the Hausdorf codimension of this set (cH = 1− dH ). We feel this can
be reproduced within our proposed method. This set of recurrent orbits will show in our
calculation ofD∞(I ) as a series of large dips, since for values ofI on this setIn − I will
be small. However, the depth of these dips will be a function of the Lyapunov exponent.
As D∞(I ) is obtained by averaging over all angles and the periodic orbits in the recurrent
set are defined by both an angle and an action coordinate, the value we will obtain for the
transport coefficient will depend on the behaviour of nearby trajectories i.e. trajectories with
the same value for the action but different value for the angles. This is controlled by the
Lyapunov exponent. On the basis of this simple argument we expect the dips in the diffusion
coefficient obtained with our method to get smaller as the Lyapunov exponent gets larger.
We then end up with a fast oscillating functionD(I) which has a number of dips whose
size is controlled by the Lyapunov exponent. In defining the average diffusion coefficient
by the exit rate or equivalently by the first non-zero eigenvalue of the associated Dirichlet
problem we can intuitively understand that this decay rate is going to depend not only in
the size of the dips but also on how often these dips occur. The more often these dips the
smaller the decay rate. This is controlled by the Hausdorff dimension of the recurrent set.
In this way we see that one can reproduce, at least qualitatively, the connection between the
effective transport coefficients and the Lyapunov exponents and the Hausdorff dimension
of the recurrent set in the context of the present method. A rigorous mathematical proof of
this statement is currently under investigation, but as it is beyond the scope of this paper
we hope to report on it in a future publication.

We consider that of the two methods of defining effective diffusion coefficients proposed
here, the second one is preferable since it can easily be generalized to higher-dimensional
maps.

4. Exit times

In this section we give estimates for the first exit times from a domain using the local
transport coefficients obtained here and show that using these results we can approximate,
analytically, certain quantities defined by Benkaddaet al [3] and which were shown
numerically to give very good indicators of transport.

The average first exit timeσ(I) from a domain as a function of the initial position in
phase space is given by the solution of the following boundary value problem [17]

(V (I )σ (I ))′ + (D(I)σ (I )′)′ = −1

σ(I0− L/2) = σ(I0+ L/2) = 0
(51)

where the dash denotes differentiation with respect toI and the domain chosen is a slab
centred atI0 with width L. The solution to this problem can be readily written as

σ(I) = 1

ψ(I)

∫ I

I0−L/2

−y + C
D(y)

ψ(y) dy

ψ(I) = exp

(∫ I

I0−L/2

V (y)

D(y)
dy

) (52)
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whereC is a constant given by

C =
(∫ I0+L/2

I0−L/2

yψ(y)

D(y)
dy

)[∫ I0+L/2

I0−L/2

ψ(y)

D(y)
dy

]−1

. (53)

For the maps of the form used hereV (I) is of several orders of magnitude smaller that
D(I) at least in the largeK limit and so to the order of approximation that we are interested
in we can takeψ(I) ' 1. Then assuming thatD(I) = K2

4 (A1+εA2f1(I )+ε2A2f2(I )+ ...)
and expanding as in the last section we obtain to orderε

σ (I ) = L2

8A1
+ ε 01L

2A1
+ εA251

A2
1

− εI0A252A
2
1+O(ε2) (54)

where01 and51,52 are given as integrals off1(I ) andA1 = 1+ J0(K) for the Antonsen
map orA1 = 1− 2J2(K) for the standard map. Rather than give the general expressions
here, which are lengthy, but straightforward to obtain, we just give the result for the special
case wheref1(I ) = cos(mI) namely,

σ(I, I0)= L2

8A1
− εA2 cos(mI0) cos(mL/2)

m2A2
1

− ε
2

A2L cos(mI0) sin(mL/2)

mA2
1

+ εA2 cos(mI0)

m2A2
1

(55)

where we have added the variableI0 in the exit time to characterize the centre of the slab
we are working with.

In their paper Benkaddaet al [3] introduced a measure for the study of transport, which
quoting from their paper, can be defined as follows. Given an initial pointI0 at t0 = 0 they
choose a first domain�0 containingI0 and then determine the exit timeτ(I0, �0), then
associate a new positionIt1 outside the initial domain, and a new domain�1 and find the
exit time τ(It1, �1). This procedure is repeated to obtain an orbit average〈T 〉(I0) of exit
times (if it exists)

〈T 〉(I0) = lim
n→∞

1

n

n−1∑
k=0

τ(Itk , �k). (56)

Their numerical results showed that this measure can describe ‘global’ aspects of transport
such as an effective (averaged) diffusion coefficientDa and in fact their numerics show that
this quantity behaves in accordance with1

D
.

Here, we show how to obtain an analytical estimate for this quantity using the exit times
obtained from the local transport coefficients proposed here. In the formula defining〈T 〉
we substituteτ with the mean exit timesσ(I, I0) and we change the orbit averaging with a
phase-space average, by taking a sequence of identical slabs centred atIi = I0 + i1I and
then averaging over a large number of them. This gives

〈T 〉(I0) = L2

8A1
+ εF cos(m1IN)

N
+ εGsin(m1IN)

N
+ · · · (57)
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where

F =
(
−A2 cos(mI0) sin(mL/2)

m2A2
1

− A2L cos(mI0) sin(mL/2)

2mA2
1

+ A2 cos(mI0)

m2A2
1

)
×sin(m1I +mI0)+ sin(mI0)

2 sin(m1I)

G =
(
−A2 cos(mI0) sin(mL/2)

m2A2
1

− A2L cos(mI0) sin(mL/2)

2mA2
1

+ A2 cos(mI0)

m2A2
1

)
×cos(m1I +mI0)+ cos(mI0)

2 sin(m1I)
.

(58)

We now note that in the limit asN →∞ and taking into account the results of section 3,

〈T 〉 → L2

8A1
∝ 1

Da

(59)

in accordance with the numerical results of Benkaddaet al [3]. However, for finiteN there
will also be an action dependence in this quantity reflecting the fact that it still keeps some
local information.

Closing this section we would like to make a connection with the work of Zumofen
and Klafter [19] that associate anomalous diffusion in the standard map with the exit time
distribution. Using our method and the results of this section we can obtain an analytical
average first exit time distribution. As the minima in the diffusion coefficient obtained will
correspond to large spikes in the exit time distribution our results for the exit time will
reproduce some of the features for the exit time plotted in figure 3 of [19], or rather the
average of this exit time over the possible phases. In this way one could approximate using
analytical techniques some of the features of the exit time distribution which is obtained
numerically in [19]. It can be also seen that an action-dependent diffusion coefficient can
reproduce power laws in the exit time distribution. For instance, a diffusion coefficient of
the formD(I) ∼ I β will give average exit times of the formσ(I) ∼ c1I

1−β + c2I
2−β

which in turn reflect a power law exit time distribution similar to the one proposed in [19]
using Levy walk arguments. The problem of relating exit time distributions for anomalous
diffusion using a diffusion equation with a power law in action diffusion coefficient has
also been studied by Pikovski [20]. Furthermore, in certain cases where our method for
defining the diffusion coefficient shows poor convergence as a function of the iterations used
(because of the existence of long-time correlations, e.g. the case of accelerator modes in the
standard map) we can put an explicit time dependence in the analytically calculated diffusion
coefficient leading to an even greater wealth of possible asymptotic laws resembling more
and more long correlated Levy walks.

5. Generalization to higher-dimensional maps

The results obtained in this paper are readily generalized to higher-dimensional maps which
are generalizations of the two-dimensional maps introduced in section 2. Now an averaging
over the different angles must be made and instead of scalar drift and diffusion coefficients
we will have a vector drift coefficient(V1(I), V2(I), . . .) and a diffusion tensorDij (I)
where i, j = 1 . . . n, n the number of the actions, andI = (I1, . . . , In). The diffusion
equation will then be

∂P (I, t)

∂t
=
∑
i

∂Vi(I)P (I, t)

∂Ii
+
∑
ij

∂

∂Ii
Dij (I)

∂P (I, t)

∂Ij
. (60)
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An average diffusion coefficient can now be obtained using the decay rate of an initial
probability distribution in a slab with absorbing boundary conditions. While some very
efficient variational techniques can be used in the higher-dimensional case as well and
which can give bounds on the effective diffusion and drift coefficients in this case we prefer
to use a perturbative technique in more or less the spirit of the one used in section 3.2. We
work with the special case of coupled standard-like maps of the form

I1,n+1 = I1+ F1(θ1,n, θ2,n)

I2,n+1 = I2+ F2(θ1,n, θ2,n)

θ1,n+1 = θ1,n + ω1(I1,n+1, I2,n+1)

θ2,n+1 = θ2,n + ω2(I1,n+1, I2,n+1)

(61)

for which the local drift vector and local diffusion tensor will be of the form

V1 = 1

ε
f1(I1, I2), V2 = 1

ε
f2(I1, I2)

D11 = 1

4ε4
(A1+ εg1(I1, I2)+ · · ·)

D22 = 1

4ε4
(A2+ εg2(I1, I2)+ · · ·)

D12 = O(ε)

(62)

whereε2 = 1/K. Note that this specific form of the transport coefficients is not necessary
for the application of the method.

We now have to solve the eigenvalue problemL̂FPP (I) = −λP (I) whereL̂FP is the
spatial part of the Fokker–Planck equation. The boundary conditions imposed are absorbing
boundary conditions on a higher-dimensional slab. Rescaling the eigenvalue by defining
λ̄ = 4ε4λ and using the expansion

P = P0+ εP1+ · · ·
λ̄ = λ̄0+ ελ̄1+ · · ·

(63)

we separate orders ofε to obtain to zeroth order

L̂0P0 =
(
A1

∂2

∂I 2
1

+ A2
∂2

∂I 2
2

)
P0 = −λ̄0P0

P0(−L1/2, I2) = P0(L1/2, I2) = 0 P0(I1,−L2/2) = P0(I1, L2/2) = 0

(64)

and to first order

L̂0P1 = −λ̄0P1− λ̄1P0+ ∂

∂I1
g1(I1, I2)

∂

∂I1
P0+ ∂

∂I2
g2(I1, I2)

∂

∂I2
P0

P1(−L1/2, I2) = P1(L1/2, I2) = 0 P1(I1,−L2/2) = P1(I1, L2/2) = 0.
(65)

The zeroth-order problem can be solved to give the eigenfunctions

P0nm = cos

(
πnI1

L1

)
cos

(
πmI2

L2

)
n,modd

λ̄0nm = A1
n2π

L2
1

+ A2
m2π

L2
2

.

(66)



Local transport coefficients for chaotic systems 1523

Using the self-adjointness of the operatorL̂0 we can findλ̄1nm from a consistency condition
similar to the one used for the one-dimensional case. This yields

λ̄1nm =
(∫ L1/2

−L1/2

∫ L2/2

−L2/2

(
∂

∂I1
g1(I1, I2)

∂

∂I1
P0nm + ∂

∂I2
g2(I1, I2)

∂

∂I2
P0nm

)
P0nm dI1 dI2

)
×
(∫ L1/2

−L1/2

∫ L2/2

−L2/2
P 2

0nm dI1 dI2

)−1

. (67)

Matching this decay rate with the one obtained from the constant drift and diffusion case
we can define an effective diffusion tensor which would model adequately the process, as
far as the escape of particles from a given domain is concerned.

6. Concluding remarks

In this short note we have proposed a way of obtaining local transport coefficient for chaotic
systems. The method is a formal one which is based on the assumption of randomization of
the angle coordinates after a sufficiently high number of iterations. The first approximation
is nothing but the well known quasilinear approximation which takes the angles as totally
uncorrelated after one iteration of the map. The higher-order approximations are obtained
by assuming that angle randomization occurs after two or more iterations of the map.
This extension alleviates the need for strong chaos for the validity of the Fokker–Planck
description and leads to the possibility of introducing long-time correlations in the motion.
Furthermore, allowing the transport coefficients to be functions of action we can reproduce
to some extent results on the transport in phase space that have been modelled with other
techniques such as use of Levy walk models or transport equations containing fractional
derivatives. Some ways of getting effective diffusion coefficients from these local ones have
been given. Connections with previously used techniques for obtaining transport coefficients
have also been made. The extremely interesting problem which is left open is to put on a
rigorous basis these angle randomization assumptions, which to the best of our knowledge
has not yet been dealt successfully except in the case of certain simple maps [18].

Appendix: Derivation of equation (48)

In this appendix we highlight the derivation of equation (48) concerning the homogenized
(or average) diffusion coefficient in the case where the local diffusion coefficient depends
on a fast and slow scale in the action. Assume a diffusion equation of the form

∂P

∂t
= ∂

∂I
D

(
I,
I

ε

)
∂P

∂I
(68)

and defineI1 = ε−1I0, I0 = I and t0 = t , t1 = ε−1t0 andt2 = ε−2t0. Expanding in these
multiple scales and using the ansatzP = P0+ εP1+ ... for the probability distribution we
obtain to the first orders

∂

∂I1
D
∂P0

∂I1
= ∂P0

∂t2
∂

∂I0
D
∂P0

∂I1
+ ∂

∂I1
D
∂P0

∂I0
+ ∂

∂I1
D
∂P1

∂I1
= ∂P1

∂t2
+ ∂P0

∂t1
∂

∂I0
D
∂P0

∂I0
+ ∂

∂I0
D
∂P1

∂I1
+ ∂

∂I1
D
∂P1

∂I0
+ ∂

∂I1
D
∂P2

∂I1
= ∂P0

∂t0
+ ∂P1

∂t1
+ ∂P2

∂t2
.

(69)
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Averaging the first equation overt2 and imposing the periodicity condition onI1 we find that
P̄0 is only dependent onI0, where the overbar denotes averaging overt2. Then averaging
the second equation overt1 and t2 we obtain that

D

(
∂ ¯̄P1

∂I1
+ ∂
¯̄P0

∂I0

)
= C(I0) (70)

where the double overbars now denote averaging over botht1 and t2. Then the next-order
equation gives, after averaging over botht1 and t2 and imposing periodicity inI1, the
consistency condition

∂

∂I0

∫
Q

D dI1
∂ ¯̄P0

∂I0
+ ∂

∂I0

∫
Q

D
∂ ¯̄P1

∂I1
dI1 = ∂ ¯̄P0

∂t0
. (71)

We then assume that̄̄P1 can be written in the form

¯̄P1 = g(I1)
∂ ¯̄P0

∂I0
+ P̃0(I0)

with g periodic inI1. Theng solves the equation

D
dg

dI1
= −D + C(I0)

which is consistent with periodicity ofg if

C(I0)
−1 =

∫
Q

D−1 dI1 ≡ Da. (72)

With this choice for ¯̄P1 one can then clearly see that¯̄P0 satisfies the diffusion equation

∂ ¯̄P0

∂t0
= ∂

∂I0
Da

∂ ¯̄P0

∂I0
(73)

which is equivalent to equation (48).
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